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M2m = 1/(5n) (3/~/2)z Z (3 cos z p~ + 1) r k-) 6 . (5) 
k] 

The atomic positions of the protons were not given by 
Hope & McCullough (1964), but a set of likely positions 
has been obtained by assuming that the carbon-hydrogen 
bond distance is 1.08 A and the H-C-H angle is 109.5 °. 
By means of these positions the second moment for the 
static case [equation (3)] and the fast oscillating case 
[equations (4) and (5)] have been calculated, and the results 
are given in Table 1. 

Table 1. Experimental and theoretical second moments for 
a static andflipping CaHsSe molecule 

Theoretical Experimental 
Case second moment second moment 

Static 17.6 G z 19 +2 Gz 
Flipping 8"4 8.5 _+ 1 

The proton magnetic resonance spectra of C4HsSe. 12 
held at several temperatures from room temperature down 
to liquid nitrogen temperature were recorded on a Varian 
Asc. Dual Purpose Spectrometer operating at 60 Mc.sec. -a. 
The room temperature spectra were definitely narrower than 
the spectra obtained at liquid nitrogen temperature (Fig. 2). 
When the sample is cooled from room temperature the 
spectrum begins to broaden at about - 7 0  °C, and the 
broadening is completed at about - 140 °C. At these low 
temperatures the signal is easily saturated, indicating that 
the spin-lattice relaxation time gets longer as the temper- 
ature is decreased. To avoid saturating the signal we had 
to work at a low r.f. power level, resulting in a relatively 
poor signal to noise ratio. The spectrum also changes shape 
in the transition region from a simple bell shaped curve at 
room temperature to a broadened two-peak spectrum at 
low temperatures. For these two reasons we have not tried 
to evaluate an activation energy from the temperature dep- 
endence of the spectrum, as the accuracy using the standard 
procedure will be questionable. The second moments of a 
set of room temperature spectra and of a set of spectra 
obtained with the sample in liquid nitrogen have been eval- 
uated, and the results are given in Table 1. The liquid nit- 
rogen second moment is compared with the theoretical 
second moment calculated for a rigid molecule, and the 
room temperature second moment with the motionally 
averaged theoretical second moment. 

All these observations give a consistent picture of the 
motion of the tetrahydroselenophene molecules in the solid 
iodine complex in accordance with the ideas of Hope & 

McCullough (1964). The observed temperature dependence 
of the spectrum shows that the molecule is oscillating be- 
tween two equivalent conformations with a thermally activ- 
ated motion, which is slower than 10 kc.sec-a below - 140 
°C and faster than this above - 7 0  °C. The proton spin 
system is very likely relaxed by means of this oscillatory 
motion, explaining why the signal was easily saturated at 
low temperatures. The broadened two-peak spectrum ob- 
tained at low temperatures is due to the fact that the protons 
are grouped in pairs, methylene groups, in the molecule 
(Pake, 1948). The main contribution to the second moment, 
11.6 G 2, is given from this strong intra-pair interaction. 
When the molecule is oscillating fast, however, this inter- 
action is greatly reduced, explaining the observed bell- 
shaped curve without any fine structure at high temper- 
atures. Finally, the good agreement between the observed 
and calculated second moments given in Table 1 also more 
quantitatively supports the proposed model of the molec- 
ular motion. 

The authors wish to thank Professor J. D. McCullough 
for the gift of the sample used in this investigation, and 
the Norwegian Research Council for Science and the Hum- 
anities for financial support. 
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Fig. 2. The proton magnetic resonance spectra of C4HaSe. Iz 
at (a) room temperature and (b) -200°C. Note the dif- 
ference in scale. 
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Introduction to tessellations 

A regular tessellation (Coxeter, 1961, p. 61) is an assemblage 
of equal regular polygons that cover the plane without 

* On leave of absence from Mineralogical Institute, Univ- 
ersity of Tokyo, Hongo, Tokyo, Japan. 

overlap or interstice. Schl~fli proposed the symbol {p, q} 
to designate a tessellation ofp-gons, q of which meet at each 
vertex. There are three regular tessellations. The vertices of 
{4,4} are the nodes of a primitive square net; those of {3,6} 
form a primitive hexagonal net. The vertices of {6,3}, on the 
other hand, do not make a net: they illustrate the structure 
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of a honeycomb. The dual of {p,q} being {q,p}, it is seen 
that {4,4} and its dual give a centered square net, while 
{3,6} and its dual {6,3} produce a hexagonal net, in which 
{3,6} defines the triple mesh and {6,3}, the corresponding 
H-centering nodes (Fig. 1). 

Compound tessellations have been described by Coxeter 
(1948; I961 to 1965) as follows. Start with the regular tes- 
sellation {4,4} and consider the vertex of coordinates (u,v), 
say (2,1). By applying rotations through one, two, and three 
right angles about the origin, we get four points in all: 
(u,v), ( - v , u ) ,  ( - u , -  v), ( v , -  u). The origin and these four 
points are the beginning of a new {4,4}, of edge I/(u2 + v2), 
inscribed in the given {4,4}, of unit edge. By applying suit- 
able translations we obtain a distribution of all the ver- 
tices of the original {4,4} among n =  u2+ v2 such larger 
{4,4}'s. This set of n {4,4} s of edge I/(u2 + v2), inscribed in a 
single {4,4} of unit edge, is called a compound tessellation 
and is denoted by 

{4,4}[n{4,4}], with n = u 2 + v 2 .  

Here u and v may be any two non-negative integers, with 
u + v > l .  

Natural  coordinates used by Coxeter in the study of the 
other tessellations are oblique coordinates, with interaxial 
angle equal to 60 ° . This system of coordinates will be con- 
venient to handle problems in the hexagonal reciprocal lat- 
tice. In order to apply the concept of compound tessellations 
to crystal structures, however, it is better to choose the axes 
of coordinates according to crystallographic conventions: 
we use the Bravais axes, with a =  b and interaxial angle 
~, = 120 °. The vertices of a {3,6} of unit edge are all the points 
for which the coordinates u and v are integers. Consider a 
vertex (u,v), say (2,1). By applying rotations about the 
origin through multiples of 60 °, we exhibit such a vertex 
(u,v) as belonging to a hexagon: (u,v), ( u - v , u ) ,  ( - v , u - v ) ,  
( -  u , -  v), ( v -  u, - u), ( v , v -  u). The origin and these six 
points constitute the beginning of a new {3,6}, of edge 
1/(u2-uv+v2),  inscribed in the given {3,6}, of unit edge. 
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Fig. 1. The three regular tessellations (solid lines), each one 

with its dual (dashed lines). The vertices of the dual are inside 
the polygons of the original tessellation. 

By applying suitable translations, we obtain a distribution 
of all the vertices of the latter among n = u 2 - u v  + v2 such 
larger {3,6}'s. This compound tessellation is denoted by 

{3,6} [n{3,6}], with n = u 2 - u v + v  z ,  

where n is the multiplicity of the large cell. Examples of 
this compound tessellation (Fig. 2) are drawn for u = 1 and 
v ranging from 2 to 6; the corresponding multiplicities being 
3, 7, 13, 21, and 31. 

The concept of compound tessellations is useful to il- 
lustrate the relationships in two dimensions between: sub- 
net and net, net and supernet, crystal lattice and twin lat- 
tice. It can be applied to projections or to sections. 

Iida (1957), although he did not mention the word tes- 
sellation, in a study of the layer structures found in magnetic 
oxides, described arrangements of points that are indeed 
compound tessellations of multiplicities 3 and 7. The latter 
has no physical representative. 

The first compound tessellation recognized as such in 
crystallography was pointed out to us by Professor Coxeter, 
in 1963, in the structure of zinkenite (Sadanaga & Takeda, 
1961). Other examples were then recognized in the struct- 
ures of klockmannite, benstonite, and CuAsSe2 (Donnay & 
Takeda, 1963). 

To classify crystal structures that contain closely packed 
ions, Loeb (1962, 1964) employed a subdivision of the hexa- 
gonal net into subarrays, which is nothing else than an 
hexagonal compound tessellation. Although he did not use 
the word tessellation either, he derived the multiplicity for- 
mula (h 2 + hk + k2), which is the form* that applies when the 
interaxial angle is equal to 60 °. The examples given in his 
paper have multiplicities 3 (corundum), 4 (spinel and cu- 
prite), and 12 (high-temperature quartz). 

T e s s e l l a t i o n s  i n  c r y s t a l l o g r a p h y  

The regular tessellation {4,4}, crystallographically speaking, 
is a primitive square net. The compound tessellation 
{4,4}[n{4,4)], with n = u 2 + v  2 and (u,v)=(1,1),  or {4,4} 
[2{4,4)], is the supernet (double net) built on the double 
(centered) mesh. 

The regular tessellation {3,6} is a hexagonal net. The 
compound tessellations are {3,6}[n{3,6}], with n = u E - u v  
+v2. 

* Professor Coxeter (private communication) points out 
that the sequence of multiplicities may be represented equally 
well by the two forms h2 + hk + 12 and u 2 - u v +  v2 because of 
the identity ( u -  v)2 + ( u -  v)v + v2 = u 2 - uv + v2. 

u 
Fig. 2. Examples of compound tessellation {3,6} [n{3,6}], 
where n = u z -  uv + v z is the multiplicity of the large cell, 



476 S H O R T  C O M M U N I C A T I O N S  

For (u,v) = (1,2) the compound tessellation is the H mode 
of the hexagonal net, and the multiplicity of the mesh is 
n=3.  

For (u,v)= (1,3), n = 7, no example is known. 
For (u,v)=(1,4), n=13, an application is found in the 

twinning of klockmannite. Consider the projection on (001), 
given by Taylor & Underwood (1960, p. 362, Fig. 3). Start- 
ing with the net that has the smallest mesh, tessellation 
(u,v)-(4,1) defines the true net of crystal I, while tessel- 
lation (u,v)=(1,4) gives the net of crystal II. Likewise, 
starting from the true nets, (u,v)=(1,4) of crystal I and 
(u,v)=(4,1) of crystal II each gives the same supermesh. 
For all cells, c has the same value. The twin lattice may be 
defined either by the supercell or by the subcell of the true 
cell; the physical significance of the sublattice is obvious. 

The same tessellation (u,v)= (1,4) also expresses the net, 
starting from a subnet, in CuAsSe2 (Sadanaga, 1962). 

A third example is found in benstonite, Ca7Ba6(CO3)13, 
which was described by Lippmann (1962, p. 591, Fig. 1). 
This species is rhombohedral; its hexagonal cell has a =  
18.28, c=8.67 A.. The 'calcite subcell' of benstonite has 
a'= a/1/13 = 5.07,oc'= 2c= 17.34 A (note that calcite has a = 
4.990, c = 17.06 A). 

For (u,v)=(1,6), n=31,  the compound tessellation ex- 
presses the net of zinkenite, PbSb2S4, from its subnet of 
metal atoms (Sadanaga & Takeda, 1961, 1964). The hex- 
agonal subcell has a'  = a/1/31 = 3.98, c' = c/2 = 2.16 A, with 
a =  22.17, c=4.33 A. The angle between the nearest a axes 
is 8 ° 57'. The concept of compound tessellation proved very 
helpful in deriving the structure of zinkenite. 

The structure of koenenite, 4NaC1.4(Mg,Ca)C12.5Mg 
(OH)2.4AI(OH)3, studied by Lohse, Allmann, Burzlaff & 
Heliner (1963), consists in an alternation of octahedral 
layers of two kinds" brucite-like OH double layers, [MgTAI4 
(OH)22] 4+, and C1 double layers, [Na4(Ca, Mg)2Clt2] 4-. The 
C1 substructure is hexagonal - R "  al = 4.072, Cl = 3 x 10-88 
= 32-64 A, and the OH substructure is hexagonal-  P" a2 = 
3.052, c2= 10-88 A. The measured angle between at and a2 
is 28.3°+ 0.1 °. It can be explained by means of tessellations. 
As was pointed out by Allmann (1965), the compound tes- 
sellation (u,v)=(9,19), with n= 271, of the CI layer, has a 
mesh with edge of 4.072 1/271 = 67.03 A, which can coincide 
with a block of 22 x 22 meshes of the OH layer (3.052 x 22 = 
67.14); and the predicted angle is 28.26 °. Allmann also re- 
marks that an angle of 28.35 ° can be predicted with the com- 
pound tessellation (u,v)= (19,40), n = 1201, of the OH layer, in 
coincidence with a block of 26 x 26 meshes of the C1 layer. 
The large mesh, in this case, would have an edge of 105.67 
A.. A third possibility would be to consider a compound tes- 
sellation in each kind of layer, and let the meshes coincide. 

The regular tessellation {6,3} is illustrated by the structure 
of a graphite sheet. 

It is possible to extend the notion of tessellation to quasi- 
symmetrical cases. The twin lattice in cryolite, Na3AIF6, 
provides an example. The cell dimensions, determined by 

Nfiray-Szab6 & Sasvfiri (1938), are as follows: a=5.46,  
b = 5.61, c = 7-80 kX, fl= 90°11'. The twinning is controlled 
by the pseudo-symmetry of a double cell, obtained by trans- 
formation 170/110/001. This cell is a pseudo-cube, and in 
the (001) plane the compound tessellation {4,4} [2{4,4}] is 
approximated. 

Galena-type substructures in freieslebenite and diaphor- 
ite, described by Hellner (1957, 1958), give other examples 
of this kind of approximate tessellation. Here the cells are 
orthorhombic, and their edges are multiples of the cell edge 
a'  of the compound tessellation {4,4} [2{4,4}] of the galena- 
type substructure: for freieslebenite, a=2a', b=3a'; for 
diaphorite, a = 4a', b = 8a'. 

In pectolite Ca2NaHSi309 (Buerger, 1962) and miargyrite 
AgSbS2 (Hofmann, 1938), the subnets resemble {3,6}'s, but 
the meshes are parallelograms instead of 120 ° rhombs. 

This note was catalyzed by a conversation with Professor 
H. S. M. Coxeter. The work was supported in part by the 
National Science Foundation (Grant NSF-GP 1565). 
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Raub, Zwicker & Baur (1953) discovered two compounds AuzMn was determined by Herpin, Meriel & Meyer (1958) 
in the Au-Mn phase diagram which gave very similar X-ray and Hall & Royan (1959). This compound has a spiral 
powder diffraction patterns. The structure of the compound magnetic-spin structure and becomes ferromagnetic when a 


